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Although the statistical method of partial least squares (PLS) is widely used for the analysis 
of the relationship between molecular properties and biological potency, it is recognized that 
PLS detects only linear relationships. We tested two types of properties: simulated univariate 
data and electrostatic molecular field as a function of Hammett a constants. In both cases we 
compared relationships in which the function is linear, asymptotic, or rises to an optimum 
and then falls. We found that PLS analysis of the matrix of the distances between every pair 
of compounds detects all three types of relationships with the same quality of cross-validation. 
The successful application of the method requires that the distance matrices be constructed 
such that each contains only information about one property (for example, the electrostatic 
field around the functional group of interest). Carbo and Hodgkin similarities perform less 
well than distances. 

Background 

PLS, partial least squares, is a popular statistical 
method that is used to find relationships between a 
dependent property such as bioactivity and a large 
number of potential predictor properties.1 Its strength 
is that through cross-validation it detects valid relation­
ships but does not over-fit the relationship.2 PLS is 
used in CoMFA, comparative molecular field analysis, 
a commonly used method for analyzing the relationships 
between biological potency and the 3D features of the 
molecules.34 However, PLS has an important weakness 
in that it does not detect nonlinear relationships be­
tween the dependent property and potential predictors. 

When the biological potency of a set of molecules 
depends on their pica's, the relationship will not always 
be linear, but may instead be parabolic or asymptotic.5 

Therefore, although CoMFA electrostatic fields can 
explain linear relationships with pK& and forecast pifa's 
of compounds not included in data sets,6,7 we have been 
concerned that PLS and hence CoMFA would miss 
nonlinear relationships. Hence we were intrigued by a 
brief report that a PLS analysis of a matrix of the 
distances between every compound of a data set de­
tected the nonlinear relationship between a physical 
property and biological potency.8 Others use PLS to 
analyze similarity matrices and frequently find that the 
models are slightly statistically superior to PLS analysis 
based on the physical property data from which the 
similarity matrices were calculated.910 

This report documents that nonlinear relationships 
between physical properties and biological potency can 
be recognized by PLS when (1) the physical properties 
are used to calculate a distance between each pair of 
compounds in the dataset and (2) the resulting distance 
matrix is analyzed with PLS. We will show that in 
order to detect the relationship, the distance matrices 
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should be calculated such that properties that are 
intrinsically independent are not mixed into one dis­
tance measure. 

As already recognized by others, the calculation of a 
distance matrix is very fast.11 Hence the proposed 
method of analysis is much faster than tradiational PLS 
on the individual energy values of CoMFA fields. 

Methods 
The first dataset we analyzed contains simulated univariate 

data sets of 31 points in which the relationship between the 
dependent and independent properties is linear, asymptotic, 
or rises to an optimum and then falls, Figure 1. We deliber­
ately constructed these data sets to include many approximate 
duplicates so that the power of cross-validation12"16 is realized. 
These data1 are quite well fit by standard regression analysis 
using linear and quadratic functions of the independent 
variable: For the asymptotic case, the fitted R2 is 0.99 and 
the root mean square error is 0.097, whereas the fit to a simple 
linear function gives statistics of 0.81 and 0.384. For the 
optimum case, the corresponding statistics are 0.93 and 0.200 
for the nonlinear fit and 0.00 and 0.77 for the linear fit. 

The Euclidean distance between two compounds a and b is 
given by eq 1: 

A* = VX(P3,, -Ph,k? (D 
k 

where there are n properties Pk. In univariate data sets, this 
distance reduces to the absolute value of the difference 
between their properties, eq 2: 

Ab = \P* ~ Ph\ (2) 
The Hodgkin-Richards similarity metric S»b is defined as9 

1(Pa,*)2 + I X * ) 2 
k k 

Hab for the univariate case is thus calculated by eq 4: 

Since i/ab is indeterminant if Pa and Pb are both zero, we used 
mean-centered P values for the calculations in Table 2. 

Similarity or distance matrices are often calculated such 
that all properties are combined into one measure. This may 
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Figure 1. The simulated data used to test the ability of PLS 
to detect nonlinear relationships. The symbols show the data; 
the lines connect adjacent points. 

add irrelevant data to the measure and perhaps obscure the 
signal. To test the effect of adding irrelevant data, we added 
to the data sets in Figure 1 a column of randomly scrambled 
data that is not correlated to the independent property. We 
analyzed the combined data using both (1) a distance matrix 
calculated from the two properties and (2) two independent 
distance matrices, one calculated from each property. 

To test the ability of PLS to detect nonlinear relationships 
between a dependent variable and electrostatic fields, we used 
the 49 benzoic acids previously reported to show a good fit with 
Hammett o.e These structures had been optimized with AMI 
which is also the source of the partial atomic charges. The 
fields were calculated in Sybyl Version 6.04a (Tripos, Inc., St. 
Louis, MO); both steric and electrostatic fields were truncated 
at 30 kcal/mol; the exponent of the steric repulsion term was 
12; a distance-dependent dielectric was used; the electrostatic 
terms were dropped in regions of high steric field; and a 2 A 
spacing was used except for the analyses reported in Table 6 
where a 1 A spacing was used. The lattice extended beyond 
the molecules by ca. 4 A. 

Since the original work was done using fields calculated by 
Grid16 but we now use Sybyl CoMFA, we reanalyzed the 
benzoic acid data using the default region calculated by Sybyl 
and a 1 A spacing. The resulting CoMFA model (PLS model 
37, Table 6) had six significant latent variables, a cross-
validated standard error and R2 of 0.126 and 0.89, respectively, 
and fitted values of 0.051 and 0.98. This model compares to 
the literature analysis with seven latent variables and a fitted 
i?2of0.98.6 

We investigated fits to a, to a truncated at 0.20, and to a 
with an optimum at 0.20 with the same upward and downward 
slopes. Table 1 shows the data used. All PLS analyses were 
conducted with SAMPLS (Quantum Chemistry Program Ex­
change, Bloomington, IN)11 as interfaced to Sybyl. Since part 
of the SAMPLS algorithm is to calculate a Euclidean distance 
between every pair of observations, we imported this distance 
matrix into a Sybyl spreadsheet and used it for the distance-
based PLS calculations. To calculate the covariance matrix, 
we used eq 5:11 

<?ab = X 0 ^ - W V * - ^ ) (5) 
k 

where Pk is the mean value of the &th property. 

The covariance can be calculated from the distance matrix 
Z>ab as follows: 

Cab = - % ( D a b
2 - Da

2 - D.b
2 + D.2) (6) 

where D8-
2 and D*2 denote the averages of the squared 

distances over row a and column b, respectively, and D..2 an 
average over all rows and columns. 

We calculated the Hodgkin and Carbo similarities using 
ASP 3.02 (Oxford Molecular Ltd., Sandford-on-Thames, Ox­
ford, U.K.) based on a 1.0 A grid that extends 4.0 A beyond 
the molecules. Since this version of ASP does not allow region 
selection, we also used Sybyl to calculate the fields at a 1 A 
spacing for comparison. 

We report the statistics for the models with the lowest leave-
one-out cross-validated standard error, provided that adding 
the last latent variable to the model decreases the cross-
validated standard error by at least 5% compared to the 
previous low. This criterion is more conservative than the 
Sybyl default, but it ensures that each component increases 
the cross-validation substantially. 

The cluster analyses were performed using SAS PROC 
CLUSTER (SAS Institute Inc., Cary, NC), complete linkage 
algorithm, without normalization of the input scores. The 
optimal number of clusters was selected based on the local 
optimum of the pseudo F value. 

R e s u l t s 

In Table 2 we show a comparison between PLS using 
the original variable and PLS based on the covariances, 
similarities, or distances between the compounds in 
property space. Models 5 and 9, relat ing to PLS on the 
original property, i l lustrate t ha t the more nonlinear the 
da ta , the poorer the statistics us ing PLS. In contrast , 
distance-based PLS, models 8 and 12, performs as well 
on nonlinear da ta as it does on l inear data . Recall t h a t 
the fitted RMSE for the ordinary regression analysis 
quadratic fit is 0.097 for the asymptotic relationship and 
0.200 for the opt imum relationship. The corresponding 
s t andard errors are 0.029 and 0.053 for the distance-
baed PLS, a clearly superior fit. Table 2 also shows 
tha t , for this univar ia te example, PLS based on the 
covariance of Hodgkin similarity matrices did not model 
the nonlinear data , PLS models 6, 7, 10, and 11. 

Consideration of the cross-validated s tandard errors 
in Table 3 suggests t ha t the improvement produced by 
using distance matr ices is dependent on the construc­
tion of the distance matr ix . If i r relevant properties are 
included, PLS models 13, 15, and 17, the power of 
distance-based PLS to detect the underlying relation­
ships is reduced compared to t h a t of the corresponding 
PLS models 4, 8, and 12. Indeed, even including extra 
columns of random numbers decreases the precision of 
the results , PLS models 14, 16, and 18. 

From Table 4 we see tha t nonlinear relationships with 
electrostatic fields surrounding the carboxyl group are 
also detected by distance-based PLS, models 24 and 27. 
For the nonlinear cases, t he cross-validated s t andard 
error is halved for distance-based PLS compared to PLS 
based on electrostatic fields, PLS models 24 vs 22 and 
27 vs 25. This table also shows t h a t PLS analysis of 
the covariance matr ix does not produce superior resul ts 
compared to PLS analysis of the original property 
matr ix . 

In Figure 2 we show a plot of the Hammet t o constant 
as a function of the H a m m e t t o forecast from the 
distance-based PLS analysis . Although the cross-
validation is quite good, note the scat ter of the points. 
This reflects the fact t h a t electrostatic fields calculated 
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Table 1. Benzoic Acid Data Used for the Simulations and the Cluster Membership Based on Different Molecular Descriptors 

substituent 

P-NH2 

p-OH 
p-OMe 
p-t-Bu 
P-CH3 

m-NH2 

m-t-Bu 
p-Et 
TO-CH3 

TOe-Et 
H 
p-SMe 
p-F 
TO-CH2I 

m-CH2Cl 
P-CH2I 
TO-CH2Br 
m-OH 
m-OMe 
P-CH2Cl 
P-CH2Br 
m-SMe 
p-SH 
p-I 
p-Br 
P-Cl 
m-SH 
TO-F 

TO-I 
P-OCF3 

m-Cl 
TO-OCF3 

TO-Br 
TO-SCF3 

TO-CF3 

TO-C2F6 

P-SCF3 

P-C2F5 

P-CF3 

TO-CN 

TO-SO2Me 
p-CN 
TO-NO2 

P-SO2Me 
P-NO2 

TO-SO2CF3 

TO-SO2F 
P-SO2F 
P-SO2CF3 

Hammett 

-0 .66 
-0 .37 
-0 .27 
-0 .20 
-0 .17 
-0 .16 
-0 .15 
-0 .15 
-0 .07 
-0 .07 

0.00 
0.00 
0.06 
0.10 
0.11 
0.11 
0.12 
0.12 
0.12 
0.12 
0.14 
0.15 
0.15 
0.18 
0.23 
0.23 
0.25 
0.34 
0.35 
0.35 
0.37 
0.38 
0.39 
0.40 
0.43 
0.47 
0.50 
0.52 
0.54 
0.56 
0.60 
0.66 
0.71 
0.72 
0.78 
0.79 
0.80 
0.91 
0.93 

property 

a truncate at a = 0.20 optimum at CT = 0.20 

-0 .66 
-0 .37 
-0 .27 
-0 .20 
-0 .17 
-0 .16 
-0 .10 
-0 .15 
-0 .07 
-0 .07 

0.00 
0.00 
0.06 
0.10 
0.11 
0.11 
0.12 
0.12 
0.12 
0.12 
0.14 
0.15 
0.15 
0.18 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 

Table 2. PLS Analysis of Simulated Data Using 

-0 .66 
-0 .37 
-0 .27 
-0 .20 
-0 .17 
-0 .16 
-0 .15 
-0 .15 
-0 .07 
-0 .07 

0.00 
0.00 
0.06 
0.10 
0.11 
0.11 
0.12 
0.12 
0.12 
0.12 
0.14 
0.15 
0.15 
0.18 
0.17 
0.17 
0.15 
0.06 
0.05 
0.05 
0.03 
0.02 
0.01 
0.00 

-0 .03 
-0 .07 
-0 .10 
-0 .12 
-0 .14 
-0 .16 
-0 .20 
-0 .26 
-0 .31 
-0 .32 
-0 .38 
-0 .39 
-0 .40 
-0 .51 
-0 .53 

distance 

6 
6 
6 

5 
2 
2 
1 
5 
5 
3 
4 
5 
4 
7 
7 
4 
4 
7 
7 

cluster basis 

similarities score PLS model 24 

4 
2 
2 
2 
4 
4 
2 
5 
4 
3 
7 
6 
5 
5 
7 
7 

6 
6 
6 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
3 
1 
5 
1 
5 
2 
2 
1 
5 
5 
3 
4 
5 
4 
7 
7 
4 
4 
7 
7 

a Single Property (P) or Covariance Matrix (CM), Hodgkin 
or Distance Matrix (DM) Calculated from That Property, re = 31 

data set 

linear 
truncate 
optimum 

data set 

linear 
truncate 
optimum 

PLS model number opti 

P CM HSM 

1 2 
5 6 
9 10 

3 
7 

11 

optimum 

P 

1 
1 
1 

CM 

1 
1 
1 

DM P 

4 1 
8 1 

12 1 

(a) Leave-One-Out Cross-Validated Statistics 

mum no 

CM 

1 
1 
1 

no. PLS components 

HSM 

4 
2 
1 

] 

. PLS components 

HSM DM 

4 5 
2 5 
1 5 

standard error (cv 

P 

0.015 
0.415 
0.828 

(b) Fitted Statistics 

CM 

0.001 
0.402 
0.801 

standard error (fit) 

DM P 

5 0.014 
5 0.385 
5 0.768 

CM 

0.001 
0.385 
0.768 

HSM 

0.138 
0.422 
0.764 

HSM 

0.167 
0.474 
0.826 

DM 

0.037 
0.029 
0.053 

DM 

0.072 
0.047 
0.073 -

P 

1.00 
0.81 
0.00 

P 

score PLS model 27 

6 
6 
6 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
4 
1 
2 
2 
2 
3 
3 
1 
2 
2 
4 
5 
2 
5 
7 
7 
5 
5 
7 
7 

Similarity Matrix (HSM), 

1.00 
0.78 

-0.16 -

CM 

1.00 
0.81 
0.00 

R2( 

CM 

1.00 
0.79 

-0.09 

cv) 

HSM 

0.99 
0.72 

-0 .16 

R2(fit) 

HSM 

0.98 
0.78 
0.01 

DM 

1.00 
1.00 
0.99 

DM 

1.00 
1.00 
1.00 

from AMI partial atomic charges do not completely 
describe the Hammett a constants. Figures 3 and 4 
show the predictions, again from distance-based PLS, 
of the artificially constructed nonlinear relationships 

between electrostatic fields and Hammett a. Note that 
the scatter from the theoretical lines is no greater in 
these plots than in Figure 2 and that there is no sys­
tematic lack-of-fit in any region of either Figure 3 or 4. 
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Table 3. Effect of Adding a Random Variable to the PLS Analysis of the Data Analyzed in PLS Models 4, 8, and 12° 

data set 

linear 
truncate 
optimum 

PLS model number 

mixed separate 

13 
15 
17 

14 
16 
18 

optimum no. 
PLS components 

mixed separate 

8 6 
8 6 
9 5 

standard 

mixed 

0.076 
0.079 
0.144 

error(cv) 

separate 

0.090 
0.061 
0.093 

RHcv) 

mixed separate 

1.00 1.00 
0.99 1.00 
0.98 0.99 

standard 

mixed 

0.025 
0.026 
0.041 

error (fit) 

separate 

0.046 
0.039 
0.070 

U2CfIt) 

mixed separate 

1.00 1.00 
1.00 1.00 
1.00 1.00 

" In case 1, mixed, one distance was calculated between each pair of compounds using both the true and random descriptors. In case 
2, separate, two distance measures were calculated between each pair of compounds, one for the true and anther for the random variable. 

Table 4. PLS Analysis of Simulated Data Based on 49 Benzoic Acid pifa's Using Electrostatic Fields Calculated in the Region of the 
Carboxyl at 2 A Spacing" 

(a) Leave-One-Out Cross^Validated Statistics 

equation numbers optimum no. PLS components standard error (cv) i?2(cv) 

data set CM DM CM DM CM DM CM DM 

linear (Hammett CT) 19 20 21 3 4 
truncate at a = 0.20 22 23 24 3 3 
optimum at o = 0.20 25 26 27 1 1 

0.120 
0.137 
0.198 

0.112 
0.139 
0.185 

0.107 
0.074 
0.107 

0.89 
0.47 
0.14 

0.90 0.92 
0.44 0.86 
0.16 0.77 

data set 

linear (Hammett a) 
truncate at o = 0.20 
optimum at a = 0.20 

optimum 

F 

3 
3 
1 

(b) Fitted Statistics 

no. PLS components 

CM 

4 
3 
1 

DM 

8 
7 
5 

standard error 

F 

0.105 
0.118 
0.190 

CM 

0.103 
0.128 
0.183 

(fit) 

DM 

0.056 
0.039 
0.082 

F 

0.92 
0.60 
0.20 

i?2(fit) 

CM 

0.92 
0.54 
0.18 

DM 

0.98 
0.96 
0.86 

° The analysis examined the original fields (F) as well as covariance matrix (CM) and distance matrix (DM) calculated from these 
fields. 
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Figure 2. The Hammett a constant for substituted benzoic 
acids vs the cross-validated fit from distance-based PLS. The 
Euclidean distances were calculated from the electrostatic field 
in the region of the neutral carboxyl group, PLS model 21. The 
cross-validated standard error for this data set is 0.107. 

Table 5 shows again t h a t the variables used in the 
construction of the distance mat r ix mus t be carefully 
chosen. For the nonlinear da ta sets the cross-validated 
s t andard errors double if t he distance matr ices are 
calculated from both steric and electrostatic fields 
calculated over the whole molecule, PLS models 31 us 
33 and 34 vs 36. Note also the decreased stat ist ical 
quali ty of the nonl inear models based on distance 
matr ices t h a t include electrostatic fields calculated a t 
points i r relevant to the interaction, PLS models 32 vs 
33 and 35 vs 36. In da ta not shown, in every case 
(including H a m m e t t a) in which there was a model with 
i?2(cv) > 0.5, the distance matr ices were superior to the 
fields as descriptors. 
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Figure 3. The asymptotic function of the Hammett o constant 
for substituted benzoic acids vs the cross-validated fit from 
distance-based PLS, model 24. The Euclidean distances were 
calculated from the electrostatic field in the region of the 
neutral carboxyl group. The cross-validated standard error 
for this data set is 0.074. 

Lastly, Table 6 includes a comparison of PLS based 
on Hodgkin and Carbon similarity matr ices vs PLS 
based on the original fields or distance matr ices . In no 
case was PLS based on similarit ies superior or even 
equal to t h a t based on distance, PLS models 42 and 43 
vs 44 and 46 and 47 vs 48. 

From the da ta in Table 4 we see t h a t the statist ics 
resul t ing from distance-based PLS provide no guide as 
to the form of a nonlinear relationship: The cross-
validated s t andard errors from both of the asymptotic 
and opt imum relationships decrease by 46% (PLS 
models 22 vs 24 and 25 vs 27) whereas the error from 
the l inear relat ionship decreases by only 1 1 % (PLS 
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Figure 4. The optimum function of the Hammett a constant 
for substituted benzoic acids vs the cross-validated fit from 
distance-based PLS, model 27. The Euclidean distances were 
calculated from the electrostatic field in the region of the 
neutral carboxyl group. The cross-validated standard error 
for this data set is 0.107. 

model 19 vs 21). Hence, we needed a way to explore 
the shape of an unknown nonlinear relationship. The 
simplest is to plot the value of the charge on the atoms 
involved in the nonlinear relationship identified by PLS. 

We clustered the compounds on the basis of their 
scores in the PLS analyses of the nonlinear relationships 
listed in Table 4 and also on the basis of their distances 
to all other compounds. The clustering experiments 
produced similar results, shown in Table 1. Each 
cluster represents a set of compounds with similar 
properties. 

If the relationship between a set of descriptors and a 
target property is linear, then we expect equal variation 
of the descriptors at the extreme values of the target 
property: When Table 1 is sorted on the basis of 
Hammett a, then the lowest nine (20%) of the com­
pounds are in two clusters and the highest nine com­
pounds are in three clusters. If the relationship is 
asymptotic, then we expect that there will be more 
variation in the descriptors at the optimum value of the 
target property: When Table 1 is sorted on the basis of 
the asymptotic value, then again the lowest nine are in 
two clusters whereas the highest nine are in six of the 
seven possible clusters. Lastly, if there is an optimum 
value of the descriptor properties, then we expect that 
there will be more variation in the descriptors at the 
lower values of the target property: When Table 1 is 
sorted on the basis of the optimum value, then the 
lowest nine compounds are in three clusters whereas 
the highest nine are in only one cluster. Taken to­
gether, these observations suggest that a consideration 
of the number of clusters at each extreme of the 
dependent property range may also suggest if the 
relationship is asymptotic or rises to an optimum and 
falls. 

Discussion 

Tables 2 and 3 show that the ability of distance-based 
PLS to detect nonlinear relationships applies to any PLS 
analysis, not just that involved with CoMFA. Distance-
based PLS analysis performs better than both (a) 
ordinarly regression analysis using a squared term, (b) 
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Table 6. PLS Analysis of Simulated Data Based on 49 Benzoic Acid pKa's Using Electrostatic Fields Calculated over the Whole 
Molecule (F), or the Hodgkin Similarity Matrix (HSM), the Carbo Similarity Matrix (CSM), or the Distance Matrix (DM) Calculated 
from These Fields, 1 A Spacing 

(a) Leave-One-Out Cross-Validated Statistics 

pis model number 

data set F HSM CSM DM 

optimum no. PLS components 

HSM CSM DM 

standard error (cv) 

HSAI CSM DM" 

i?2(cv) 

HSM CSM DM 

linear 37 
truncate 41 
optimum 45 

38 
42 
46 

39 
43 
47 

40 6 
44 6 
48 1 

0.126 
0.135 
0.187 

0.178 
0.159 
0.168 

0.177 
0.157 
0.167 

0.121 
0.110 
0.160 

0.89 
0.52 
0.23 

0.75 
0.28 
0.38 

0.75 0.90 
0.29 0.70 
0.38 0.51 

data set 

linear 
truncate 
optimum 

F 

6 
6 
1 

optimum no. 

HSM 

2 
2 
1 

PLS components 

CSM 

2 
2 
1 

DM 

8 
8 
7 

(b) Fitted Statistics 

F 

0.051 
0.049 
0.174 

standard 

HSM 

0.162 
0.144 
0.161 

error (fit) 

CSM 

0.161 
0.142 
0.160 

DM 

0.029 
0.021 
0.041 

F 

0.98 
0.94 
0.33 

K2(fit) 

HSM 

0.79 
0.41 
0.43 

CSM 

0.80 
0.42 
0.43 

DM 

0.99 
0.99 
0.97 

PLS based on the covariance matrix, and (c) PLS based 
on a similarity matrix. Thus the superiority of the 
distance-based PLS is not due to simple inclusion of a 
squared term but is more subtle. We propose that the 
superiority of the method derives from its ability to 
model a more complex surface than can be modeled by 
PLS or ordinary regression analysis. Distance-based 
PLS is also simpler to run than nonlinear regression 
since one does not need to supply an equation. The one 
example provided by Kubinyi showed slightly better 
cross-validation and fit to distance-based PLS than to 
nonlinear regression analysis.8 

Algebraic substitution of eq 1 into eq 3 reveals the 
relationship between Hodgkin similarity and Euclidean 
distance: 

D 
H. ab ' 1 -

ab 

l e v 2 + l(p,/ 
(7) 

Because of the term in the denominator, the similarity 
between two compounds depends not only on the 
distance between them, but also where they are located 
in multidimensional space. At any particular distance 
value, the similarity can have any value over the 
allowed range of—1.0 to 1.0; thus the two measures are 
not correlated. 

Why is CoMFA so successful if PLS detects only linear 
relationships? The reason is that linear relationships 
are perfectly adequate for shape-related effects since 
substituents of different shape affect fields at different 
regions in space. Hence there are energy columns that 
differentiate large and small substituents. Even non­
linear relationships between potency and hydrophobicity 
are often accounted for in CoMFA since usually the 
more hydrophobic analogues are also larger.17"20 Hence, 
the detection of nonlinear relationships in CoMFA is 
critical primarily for electrostatic effects. 

A drawback to the use of distance-based PLS analysis 
is that distance matrices must be carefully constructed 
if the relationships are to be detected. One might 
investigate replacing each independent property with 
a distance matrix or, if the properties are collinear, each 
principal component of the property matrix could be 
used to generate a distance matrix. The PLS analysis 
would be over all distance matrices. 

For CoMFA-type fields, we suggest that distance 
matrices be constructed of electrostatic fields surround­
ing only a limited region in space, one functional group 
as shown here. Even if there are five or six such sites 
in a molecule, there still would be fewer columns in the 
distance matrices than there were in the original field. 
The PLS analysis will demonstrate which regions are 
important. An advantage of calculating distance over 
small regions of space is that one could decrease the 
spacing between lattice points while still maintaining 
interactive performance. In principle, this should im­
prove the quality of the results. 

A key advantage of CoMFA over many other 3D 
QSAR methods is that it leads directly to a graphic 
display of the results. This advantage is lost with PLS 
based on distance matrices. Furthermore, the statistics 
provide no clue if a relationship rises to an asymptote 
or to an optimum. This is especially difficult when the 
independent variables are energy fields since there is 
no simple way to plot potency vs field. However, if a 
result suggests a nonlinear relationship, then as sug­
gested above, the shape of the relationship may be 
revealed by a simple plot of the value of the charge on 
the atoms involved in the nonlinear relationship identi­
fied by PLS. 

There is a subtle problem with traditional cross-
validation and distance matrices. Even though one 
observation is left out by omitting its row, the column 
corresponding to that compound is typically left in the 
calculation. Our preliminary analysis suggests that this 
effect is small. However, it needs to be addressed more 
thoroughly. 
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